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Abstract— To gain theoretical insight into the relationship
between parking scarcity and congestion, we describe block-
faces of curbside parking as a network of queues. Due to the
nature of this network, canonical queueing network results are
not available to us. We present a new kind of queueing network
subject to customer rejection due to the lack of available
servers. We provide conditions for such networks to be stable, a
computationally tractable “single node” view of such a network,
and show that maximizing the occupancy through price control
of such queues, and subject to constraints on the allowable
congestion between queues searching for an available server, is
a convex optimization problem. We demonstrate an application
of this method in the Mission District of San Francisco; our
results suggest congestion due to drivers searching for parking
stems from an inefficient spatial utilization of parking resources.

I. INTRODUCTION

Drivers in densely populated urban districts often find that

desirable parking close to their destination is unavailable or

prohibitively expensive. Drivers will begin to cruise for park-

ing [1], significantly contributing to surface street congestion.

Researchers have attempted to measure the economic loss to

both these drivers and the cities themselves. For the former,

drivers in different cities can spend anywhere between 3.5

to 14 minutes searching for spots every time they park [2].

For the latter, cruising behaviors can lead to substantial

congestion in dense urban districts. For instance, there exists

a commonly cited folklore that 30% of traffic in a city is

directly due to drivers looking for parking [1]1.

Municipalities and city planners typically aim to achieve

some target occupancy: the percentage of parking spaces in

use at any given time [3]. Fig. 1 shows the occupancy of

the 3400 block of 18th St. in San Francisco, CA. Cities like

San Francisco have launched projects like SFPark to target an

average occupancy between around 85% by slowly adjusting

prices based on observed demand [3].

Parking occupancy (and availability) is an indirect measure

(and means of control) of overall demand for vehicle access.

Yet, if city planners must control congestion, occupancy

alone is not a sufficient measure. Firstly, the same occupancy

levels of two streets in different parts of the city can lead

to different effects on through-traffic delays or respond

differently to incremental price changes. Secondly, the street
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Fig. 1: The observed parking occupancy (percentage of

parking spaces in use), on a Saturday along the 3400 block

of 18th St. in the Mission District of San Francisco. Fig. 2

illustrates a key result of this paper: the congestion resulting

from lack of parking along a block-face.

Fig. 2: A visualization of one of our key results: estimated

percentage of through traffic searching for parking. This

estimate is obtained by determining the minimum arrival

rate necessary to achieve an observed occupancy (Fig. 1),

and comparing this to the observed total through-traffic.

topology and interactions between different blocks can lead

to complex traffic dynamics, which a single number like

occupancy cannot capture. At the same time, cities cannot

be overly aggressive in controlling parking occupancy since

they must maintain a high availability of parking resources

to serve downtown businesses and residents, as well as

delivery, courier, and emergency vehicle services. Therefore,

a reasonable question that a city planner would be interested

in addressing is the following: Given a maximum tolerable

level of congestion, what is the maximum occupancy at a

block and what price achieves this occupancy?



The question of parking’s impact on congestion has re-

mained difficult to address due to: 1) lack relevant data on

pricing and demand and 2) lack of tractable and rigorous

models that link parking to congestion and capture spatial

and temporal variation. To address this question utilizing

parking occupancy, traffic, and surface street topology data

that is available today, our contributions are:

1) Modeling: we describe and analyze a new kind of

queue network where customers move between queues

according to a network topology until an available

server is found, and leave the network after service

2) Control: we show that maximizing occupancy subject

to constraints on the congestion created by drivers

searching for parking is a convex program.

3) Application: we conduct a study based on real occu-

pancy and pricing data for blocks in the San Francisco

Mission District, showing that a) higher total occu-

pancy does not necessarily lead to more traffic, and b)

incentivizing drivers to park further away by reducing

price can be equally as effective as disincentivizing

drivers from parking at desirable locations.

The paper is organized as follows. We provide motivation

and review related work in Section II. In Section III, we

present the network queue model. We present results in Sec-

tion IV. In particular, we provide stability conditions under a

uniformity assumption on the network topology, we provide a

framework for determining the arrival rate in the non-uniform

case, and we pose an optimization problem to optimize park-

ing availability subject to maximum congestion constraints

that we show to be convex. In Section VI, we demonstrate the

effectiveness of the solution to the optimization problem on a

network modeled after San Francisco’s Mission District. We

conclude with discussion and commentary on future work in

Section VII.

II. MOTIVATION

As observed by Pierce and Shoup, circling for parking

occurs when occupancy reaches 100% [4], however, this

takes an instantaneous point of view likely unavailable to

city planners. Rather, if occupancy is taken to be the expected

proportion of parking spaces in use over a given time period,

then high occupancy block-faces must be full at least some

of the time, and therefore responsible for some traffic—see,

e.g., Fig. 2.

A. Data Availability

Municipalities (in particular, city planners and transporta-

tion departments) are gaining access to data from recently

installed smart parking meters and, on occasion, individ-

ual parking space sensors (e.g., San Fransisco [3], Seattle

[5], Los Angeles [6], and Pittsburgh [7]). Yet, no city

has completely implemented full-scale transportation sensor

grids that include active monitoring of parking on a space-

by-space basis. Regardless whether such a goal may be

reached, however, many cities have a growing history of

parking transaction data collected by digital meters. These

data can be used to estimate parking occupancy; transactions

provide an estimate of how long a driver intended to park

and the number of drivers parked moment to moment. In

our experiments, we make use of transaction, traffic, and

infrastructural data publicly made available by the SFPark

pilot study [8].

B. Related Work

Early work focused largely on parking supply and demand

[9], and refinement of the economic view of parking con-

tinues through today [10]. The costs of congestion caused

by cruising for parking [1], [2] have motivated research

in modeling urban parking dynamics, and economizing of

parking spaces has led to a desire to control demand levels

via price.

Over the last few decades, a number of models (e.g.,

Vickrey’s celebrated “bathtub” model) have been developed

and introduced in the absence of data only recently becoming

available [11], [12]. These models typically take a time-

varying flow and capacity view in the form of systems of

partial differential equations (see [10] for an overview of

variations on these models).

Recent research has observed, however, that transaction

data can be used to estimate parking occupancy and, in

consequence, used to estimate resource performance [13]

and consequently service time distribution [14]. The dis-

tinction that occupancy below 100% results in congestion

has recently been noted by [15] in their own analysis of

the SFPark pilot study parallel to [4], however the authors

of [15] view block-face parking as a Bernoulli random

variable, between being full or not. We build on this work

by 1) not implicitly assuming curbside parking occupancy

is independent between block-faces and 2) considering all

possible states of parking spaces—from completely empty

to completely full—along block-faces.

Occupancy and other data lend themselves to discrete

and probabilistic models that may potentially better reflect

flow on surface streets as compared to flow on highways or

through spatially homogeneous regions, as in [16] and [17].

Hence, classical methods of queueing theory have recently

been applied to parking areas: garage and curbside alike

[18]–[21].

Our work primarily builds on existing parking literature by

expressing curbside parking as a network of queues. Specif-

ically, utilizing newly available parking data, we implement

the basis for a spatially heterogeneous model city planners

can use to effectively test parking policies and, furthermore,

we determine that maximizing occupancy subject to conges-

tion constraints using price controls is a convex optimization

problem.

III. QUEUEING MODEL

A. Model Setup

Although a natural model and prevalent in traffic flow

literature [22], networks of queues have not been used

extensively in parking related research (see, e.g. [23] and the

references within for more details). Two major reasons for

this are: 1) the size of the state space grows exponentially





and π is the unique solution to

πQ = 0 (1)

such that
∑

πi = 1. Let ρ = y
µ

. By standard calcula-

tions [25],

π = π0 ·

[

1, ρ, · · · ,
ρk

k!

]

(2)

where π0 = [
∑k

j=0
ρj

j! ]
−1. Using Little’s Law, the occupancy

u, or the proportion of busy servers at any given time can

be expressed as,

u =
y

kµ

(

1− π0
ρk

k!

)

(3)

.

Note that (1 − π0
yk

k! ) is the probability that at least one

space is available. Consider, if drivers are unable to wait for

an available server at a particular block, in order to obtain

occupancies approaching 100%, cars would need to arrive

at an infinite rate in order to immediately replace vehicles

exiting service. Since it is often cited that congestion due

to driver’s searching for parking is a significant cost to the

social welfare, this is a critical misconception.

A block-face queue is therefore rejecting incoming ve-

hicles at a rate of y · πk. The difficulty therein lies with

estimating these total arrival rates, because no two adjacent

block-faces are independent.

IV. NETWORK OF QUEUES

In this section we study these networks of queues. We

first consider the uniform case, then extend the results to the

non-uniform case.

A. Uniform Network

Many urban centers have fairly uniform street topologies

(e.g., the famed Manhattan streets), where the streets from a

regular graph. In this section we make the assumption that

the queueing network is entirely uniform: the topology is

a d-regular graph, all block-faces have the same number of

servers with the same service rate µ, and they have the same

exogenous arrival rate λ.

In this regular queue network, each queue will have equal

stationary distributions in the steady state, therefore we only

need to look at a single queue as representative of the state

space of the entire network. Let x be the average rate of

rejection of a queue to one of its neighbors, and dx be the

total rejection to all of its neighbors. Let y = λ+ dx be the

total arrival rate to a queue, where λ is the exogenous arrivals

and dx are the rejections from its neighboring queues. We

have the conservation equation,

dx = yπk, (4)

where πk is the probability that all k severs are busy.

Combined with stationary distribution of (1) we have the

following equations:






πQ = 0
∑

πi = 1
dx = πk(λ+ dx)

(5)

We can write (4) as,

y − λ =
ρk

k!
∑k

i=0
ρi

i!

y (6)

where ρ = y
µ

. The equation in (6) is a polynomial in y. The

next lemma states that there exists a unique solution to y
(and thus x) as long as the queues are stable:

Lemma 1: If 0 < λ < µk, then (i) there is a unique and

positive solution to y in (6) and (ii) the solution is greater

than λ. In addition, the rejection rate x is also unique and

positive.

The proof is given in Appendix A. This result states that as

long as the total arrivals are less then the service rate times

the number of spaces, we can explicitly find the rejection

rates and the stationary probabilities by solving a polynomial

equation.

B. Non-uniform Network

Of course, the totally uniform assumption rarely holds up

in practice. But given occupancy data we show that the total

exogenous and endogenous arrivals to a queue can still be

solved for and used to estimate the traffic caused by drivers

searching for parking. This time, for some total incoming

rejection rate x, letting y = λ + x, we can estimate the

endogenous proportion of incoming arrivals as the sum of

the outgoing fractional rejection rates of adjacent queues.

Assuming the queueing network reaches steady state, from

the perspective of a single queue in solving 3 for π0 gives

π0
ρk

k!
+

ukµ

y
= 1, (7)

where u is the occupancy level and ρ = y
µ

. Rearranging

terms yeilds a polynomial in y,

0 =
k

∑

i=0

1

µi−1

[

i− uk

i!

]

yk. (8)

Again, we can characterize the solutions to (8)

Lemma 2: If u ∈ [0, 1) and k is a positive integer, then

(8) has a unique real, positive root.

The proof is provided in Appendix B.

This root need not be bounded, hence the restriction of

the values of u to the interval [0, 1). In order to achieve

a 100% occupancy, implying the probability of being full

is 1, vehicles would need to arrive constantly (y = ∞),

immediately taking the place of any vehicle that leaves upon

completion of service. This is analogous to the requirement

that for the M/M/k/k queue to be stable, π0 > 0.

V. OPTIMIZING PARKING AVAILABILITY

Price elasticity of demand provides a means of describing

how consumer demand will change with incremental changes

to price. Currently, Pierce and Shoup’s analysis of the

SFPark pilot project in [4] is the state-of-the-art in estimating

the price elasticity of demand for curbside parking; their

exploratory analysis provided rough estimates of aggregated

elasticities across time, location, and price change directions.



For the purposes of this paper, and in order to make use of

the results in [4] we assume a linear elasticity, however, any

demonstrably reasonable (reflective of consumer behavior),

concave function would not tax the validity of our results.

Thus, a individual block-face i has a linear elasticity αi (for

some fixed time period), and a function U : pi 7→ ui, taking

a price pi to an occupancy level ui, defined as

U(pi) = 1− αpi (9)

Recall (8); we can write the right-hand side of this

equation as a mapping F : Y × U → R where U = (0, 1)
such that

F (y, u) =
k

∑

i=0

1

µi−1

[

i− uk

i!

]

yk (10)

Note that this map is smooth in both its arguments y and u.

By applying the Implicit Function Theorem [28, Theorem

C.40], a smooth mapping f : u 7→ y exists and it is

continuous and differentiable. Moreover, there is an explicit

expression for its derivative and the function f maps an

occupancy u ∈ U to the unique real root y of F (y, u) = 0.

Consider the following composition for some block-face

i,

g(p) = f(U(p)) · πk, (11)

which is equal the rate of rejection of vehicles from a

block given a price p. The composition (11) takes a price

to a resulting level of congestion along an edge in a queue

network due to rejections.

The optimization problem given by

maximize
p

∑

i

U(pi)

subject to gi(pi) ≤ x̄i, i = 1, . . . ,m.

(P-1)

maximizes parking resource utilization subject to a con-

gestion constraints x̄i imposed on each block-face. Since

(9) is concave, if gi’s are convex, then (P-1) is a convex

optimization problem easily solved by gradient descent.

Theorem 1: The optmization problem (P-1) is convex.

Proof: Let x = ku. Then we can think of (8) as

F (y, x) = ( x
k! −

1
(k−1)! )y

k + · · ·+ ( x
2! − 1)y2 + (x− 1)y + x

(12)

Implicit differentiation of (25), written as DxF +DyF · y′

where y′ = dy/dx, gives

0 = (y
k

k! + · · ·+ y + 1) + (( 1
(k−1)! −

x
k! )ky

k−1+

· · ·+ (1− x))y′ (13)

Noting that (DxF )(y) = yk

k! +· · ·+y+1 and (DyF )(x, y) =
( 1
(k−1)! −

x
k! )ky

k−1 + · · ·+ (1− x) so that

y′ = −DxF · (DyF )−1 (14)

Proposition 1: Let (x, y) be a positive solution to

F (y, x) = 0, then y′ evaluated at that solution is positive.

We first show the theorem assuming the proposition is

true. We can similarly compute the second order implicit

derivative d2y/dx2; indeed,

y′′ =
DxF · (D2

yF · y′ +Dx,yF )−DyF ·Dy,xF · y′

(DyF )2

(15)

Hence, if DxF · (D2
yF · y′+Dx,yF )−DyF ·Dy,xF · y′ > 0

then y′′ > 0. We have

DxF · (D2
yF · (−DxF · (DyF )−1)+ (16)

Dx,yF )−DyF ·Dy,xF · (−DxF · (DyF )−1)

= DxF · (D2
yF · (−DxF · (DyF )−1) + 2Dy,xF ) (17)

= DxF · h(x, y) (18)

where h(x, y) = D2
yF · y′ + 2Dy,xF . Since DxF > 0, we

focus on h(x, y): Now,

(Dy,xF )(y) = ((k − 1)!)−1yk−1 + · · ·+ 1 (19)

and

−D2
yF = ( x

k! −
1

(k−1)! )k(k − 1)yk−2 + · · ·+ 2(x2 − 1)

(20)

Collecting all the x terms in D2
yF we can define

h̃(x, y) = x
(k−2)!y

k−2 + · · ·+ x. (21)

Since F (y, x) = 0, we have

x
k!y

k + x
(k−1)!y

k−1 + · · ·+ x = 1
(k−1)!y

k + · · ·+ y (22)

so that

h̃(x, y) + x
k!y

k + x
(k−1)!y

k−1 − x
k!y

k − x
(k−1)!y

k−1

= 1
(k−1)!y

k + · · ·+ y − x
k!y

k − x
(k−1)!y

k−1

Then,

D2
yF = x

k!y
k + x

(k−1)!y
k−1 + k

(k−2)!y
k−2 + · · ·+ 2

− 1
(k−1)!y

k − · · · − y.

so that

h(x, y) = 2
(k−1)!y

k−1 + · · ·+ 2−
(

1
(k−1)!y

k + · · ·+ y − x
k!y

k

− x
(k−1)!y

k−1 − k
(k−2)!y

k−2 − · · · − 2
)

y′

= y′
(

x
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1
(k−1)!

)

yk
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(

2
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+ x
(k−1)! −

1
(k−2)!

)
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(

2
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+ k
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1
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2
(k−3)!y′
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(k−3)! −

1
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)

yk−3

...
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(

2
y′
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.





Fig. 6: Neccesary total arrival rate y to achieve an occupancy

level for some fixed number of servers k with a service time

µ of 1. Not the sharp increase in total arrival rate around

the 90% occupancy mark and that increasing the number of

servers only has a marginal bearing on this arrival rate.

Fig. 7c indicates that, significantly discounting prices on

low occupancy block-faces is an equally effective solution

as raising prices at high occupancy block-faces, in order to

achieve an effective distribution of parking resources that

does not generate a costly amount of congestion searching for

parking. Indeed, considering that a small number of block-

faces may exhibit a high occupancy due to their desirable

proximity to popular locations, incentivizing drivers to park

somewhat further away may be more effective than pricing

out other drivers by means of money or time to walk to a

location.

VII. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

With the growth of ride sharing services, electric vehicles,

and increased demand for local delivery services, personal

and commercial transportation is changing. In order for

city planners to design effective future parking policies and

make use of growing bodies of parking data, we developed

a new kind of queueing network. We provided conditions

for such networks to be stable, a “single node” view of

a queue in such a network, and showed that maximizing

the occupancy of such queues subject to constraints on

the allowable congestion between queues searching for an

available server is a convex optimization problem.

B. Future Works

Although we provide some theoretical insight into the

relationship between occupancy and resulting congestion,

practically applying the above methodology to price control

(static vs. dynamic, online vs. offline) will require further

research.

(a) Occupancy and resulting traffic in vehicles per hour generated.

(b) Redistributing demand in Fig. 7a to low-occupancy block-faces using the
price changes indicated in Fig. 7c results in less total traffic.

(c) Price changes corresponding to the resulting occupancy redistribution in
VI-.2

Fig. 7: Results of experiments in section VI-.2

More broadly, a standing question in parking economics

research is that of an appropriate maximum parking time

[10]. Some argue that a lower maximum parking time or

lack of an initial buy-in price results in higher vehicle turn-

over, and hence more congestion. Indeed, according to (3),

decreasing µ increases the total arrival rate necessary to

achieve a fixed occupancy, but the probability of being full

remains unchanged. Combined with the collection of ground-

truth data and hypothesis testing, this question is closer to

being answered.

Further, driver behavior is an important next-step to be

considered. We have implicitly assumed that drivers, once

inside the network searching for parking, will park regardless

of price at a particular block-face. While this assumption

alone is not unrealistic, how demand changes with respect

to the total network sojourn time of the driver, distance from

the initially desired location, and whether or not drivers have

access to information regarding available parking locations

are all certainly critical implications to consider.
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APPENDIX

A. Proof of Lemma 1

Proof: Some algebra on (6) gives

k!(y − λ)
∑k

i=0
ρi

i! = yρk

The yk+1

µk and yρk terms cancel, and we have a polynomial

with degree k

k
µk−1 − λ

µk

k!
yk +

k−1
µk−2 − λ

µk−1

(k − 1)!
yk−1 + · · ·+ (1−

λ

µ
)y − λ = 0.

(23)

Descartes’ rule of signs [30], which roughly states that given

a polynomial and ordering its terms from highest degree to

lowest degree, the number of real positive roots is related to

the number of sign changes. Let n be the number of sign

changes (from positive to negative), then the only possible

number of positive roots to this polynomial are n, n−2, n−
4, . . . In particular, if n = 1, then the polynomial has one

and only one positive root. Applying to the polynomial in

(23), we notice the sign of the coefficients are determined by

µk−λ, µ(k−1)−λ, µ(k−2)−λ and so on, until the constant

term −λ. By assumption, λ < µk, so the first coefficient

is positive. By assumption, λ > 0, so the last coefficient

(constant term) is negative. Then for any λ ∈ (0, µk), it

causes at most one change the signs of the other coefficients.

So n = 1 for all possible λ ∈ (0, k), and there is a unique

positive solution to y.

To show that y > λ, let f(y) be the polynomial in (23).

We have f(0) = −λ < 0, and f(z) > 0 for sufficiently

large z (positive coefficient on yk term). Since there is only

one positive solution, it suffices to show that at f(λ) < 0. It

turns out that f(λ) has a telescoping sum, and

f(λ) =
∑k

i=1
λi

(i−1)! −
∑k

i=1
λi+1

i! − λ

= λ− λk+1

k! − λ

< 0.

B. Proof of Lemma 2

Proof: Let us first examine the coefficients of yk.

WLOG, assume µ = 1. We have the following sequence:

s = {−uk, 1− uk, 2−uk
2! , . . . , k−uk

k! } (24)

We will show that if u ∈ [0, 1), k ∈ Z+, the sequence (24)

undergoes exactly 1 sign change, and again apply Descartes’

rule of signs. Observe that s0 < 0 for any allowable values

of u and k. Further, observe that sk = (1− u) ((k − 1)!)
−1

.

By induction, sk will always be positive for any value of k. If

k = 1, then s1 = (1−u)(1)−1, and since u ∈ [0, 1), s1 > 0.

Assume this is true for k, then for k+1, sk = (1−u) (k!)
−1

,

so that we have that sk+1 > 0. It now suffices to show that

{s} can only undergo one sign change as we increment i. For

some k, the i–th element of {s} is si = (i− uk)(i!)−1. Fix

k. While the denominator of the sequence is itself increasing

with i (meaning {s} need not be monotonic), it is strictly



positive. We need only look at the sign of the numerator.

In particular, uk is fixed between [0, 1) · k = [0, k), and i
is the set of indices between [0, k]. The sequence (24) will

be negative until i > bukc, and since bukc < uk, we are

ensured there is only one sign change.

Since the coefficients of (8) undergo one sign change, we

again invoke Descartes’ rule, and observe that we have one

real positive root.

C. Proof of Theorem 1

Proof: Let x = ku. Then we can think of (8) as

F (y, x) = ( x
k! −

1
(k−1)! )y

k + · · ·+ ( x
2! − 1)y2 + (x− 1)y + x

(25)

Implicit differentiation of (25), written as DxF +DyF · y′

where y′ = dy/dx, gives

0 = (y
k

k! + · · ·+ y + 1) + (( 1
(k−1)! −

x
k! )ky

k−1+

· · ·+ (1− x))y′ (26)

Noting that (DxF )(y) = yk

k! +· · ·+y+1 and (DyF )(x, y) =
( 1
(k−1)! −

x
k! )ky

k−1 + · · ·+ (1− x) so that

y′ = −DxF · (DyF )−1 (27)

Proposition 2: Let (x, y) be a positive solution to

F (x, y) = 0, then y′ evaluated at that solution is positive.

We first show the theorem assuming the proposition is

true. We can similarly compute the second order implicit

derivative d2y/dx2; indeed,

y′′ =
DxF · (D2

yF · y′ +Dx,yF )−DyF ·Dy,xF · y′

(DyF )2

(28)

Hence, if DxF · (D2
yF · y′+Dx,yF )−DyF ·Dy,xF · y′ > 0

then y′′ > 0. We have

DxF · (D2
yF · (−DxF · (DyF )−1)+ (29)

Dx,yF )−DyF ·Dy,xF · (−DxF · (DyF )−1)

= DxF · (D2
yF · (−DxF · (DyF )−1) + 2Dy,xF ) (30)

= DxF · h(x, y) (31)

where h(x, y) = D2
yF · y′ + 2Dy,xF . Since DxF > 0, we

focus on h(x, y): Now,

(Dy,xF )(y) = ((k − 1)!)−1yk−1 + · · ·+ 1 (32)

and

−D2
yF = ( x

k! −
1

(k−1)! )k(k − 1)yk−2 + · · ·+ 2(x2 − 1)

(33)

Collecting all the x terms in D2
yF we can define

h̃(x, y) = x
(k−2)!y

k−2 + · · ·+ x. (34)

Since F (y, x) = 0, we have

x
k!y

k + x
(k−1)!y

k−1 + · · ·+ x = 1
(k−1)!y

k + · · ·+ y (35)

so that

h̃(x, y) + x
k!y

k + x
(k−1)!y

k−1 − x
k!y

k − x
(k−1)!y

k−1

= 1
(k−1)!y

k + · · ·+ y − x
k!y

k − x
(k−1)!y

k−1

Then,

D2
yF = x

k!y
k + x

(k−1)!y
k−1 + k

(k−2)!y
k−2 + · · ·+ 2

− 1
(k−1)!y

k − · · · − y.

so that

h(x, y) = 2
(k−1)!y

k−1 + · · ·+ 2−
(

1
(k−1)!y

k + · · ·+ y − x
k!y

k

− x
(k−1)!y

k−1 − k
(k−2)!y

k−2 − · · · − 2
)

y′

= y′
(

x
k! −

1
(k−1)!

)

yk

+ y′
(

2
(k−1)!y′

+ x
(k−1)! −

1
(k−2)!

)

yk−1

+ y′
(

2
(k−2)!y′

+ k
(k−2)! −

1
(k−3)!

)

yk−2

+ y′
(

2
(k−3)!y′

+ k−1
(k−3)! −

1
(k−4)!

)

yk−3

...

+ y′
(

2
y′

+ 2
)

.

Through straightforward, but somewhat cumbersome alge-

bra, we can show that if (x, y) is a pair such that F (x, y) = 0,

then
2

y′
+ 1 ≥ x.

Following the above inequalities and using 2
y′

+ 2 ≥ x, at

the solution (x, y) where F (x, y) = 0

h(x, y) ≥ y′
(

x
k! −

1
(k−1)!

)

yk

+ y′
(

x
(k−1)! −

1
(k−2)!

)

yk−1

+ y′
(

x
(k−2)! −

1
(k−3)!

)

yk−2

...

+ y′ (x)

= y′F (x, y)

= 0,

and y′′ ≥ 0 follows from h(x, y) ≥ 0.

Now we prove Prop. 2. This lemma follows from the

Gauss-Lucas Theorem [29], which states that if p(z) is

a polynomial with real coefficients with complex roots

r1, . . . , rn, then the complex roots of p′(z) is contained in the

convex hull of r1, . . . , rn. For a fix x, applying this theorem

to DyF yields the fact that real parts of all roots of DyF
is less than the root of F (x, y). Since DyF → −∞ as

y → ∞, at the root of F (x, y), DyF ≤ 0. By (27) and

the fact DxF > 0, y′ > 0.


